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I. INTRODUCTION

Data deficiency is often a problem in regression analysis. The problem, for
example, may be due to non-availability of data on some variable, missing observa-
tions, lack of information due to multicollinearity and measurement errors, etc.
Various approaches have been suggested to deal with the problem depending on its
precise nature. One such problem we want to focus our attention on is the lack of
time disaggregateddata in time-series regression analysis. In particular, observations
on some variables over a shorter time interval like a quarter may be limited in
number while the corresponding observations over a longer time interval like a year
are available for a long period of time. The number of quarterly observations may
not be sufficient to estimate the desired relationship with acceptable degrees of
freedom. On the other hand, estimation with yearly data may require the use of a
long time series going way back into the past. The estimates thus obtained may not
capture the relationship prevailing at present or in the recent past and, therefore,
mislead the researcher. In addition, the use of yearly data may also result in lack of
degreesof freedom.

One possible approach to deal with the problem is to convert the yearly data
into quarterly data by using some distribution scheme and combine with these data
the other quarterly observations available. Friedman (1962) suggestsvarious non-
correlation methods of distributing a time aggregatedseries into a time disaggregated
seties. Chow and Un (1971), Friedman (1962), Hsiao (1979) and Palm and Nijman
(1982) also suggest various methods of using a time disaggregatedrelated series to
distribute a time aggregatedseriesover shorter time intervals.

The problem with any method of distribution is that it introduces measure-
ment error and related problems in regressionanalysis. Due to this reason we suggest
another approach which is quite simple and does not involve distribution of yeany
data over quarterly intervals. One can simply pool quarterly and yearly data
adjusting for heteroscedasticity introduced by the pooling. It is shown that the
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estimators of regression coefficients with pooled data have smaller variances as
compared to the estimators with yearly or quarterly data.

The paper is organized as follows. In Section 2 we present the model and
derive an Ordinary Least Squares estimator and the corresponding variance-
covariance matrix of the vector of regression coefficients with alternative data sets.
Relative efficiency of the alternative estimators is compared in Section 3. Section 4
presents the conclusions of the paper with some thoughts on future research.

(5') E(U U) = 40'2 for all t= st 8

= 0 for all t =f s.

2. THE MODELAND ITS ESTIMATIONWITH
ALTERNATIVEDATA SETS

With no loss of generality, we assume that the quarterly observations are
available over a whole number of years, say m. In addition, n yearly observations are
also assumed to be available. Asis more likely, it is assumedthat the yearly observa-
tions appear before the quarterly ones. We consider the following three options
availableto estimate the relationship.

Let the relationship to be estimated be described by the following linear
regressionequation:

Option I

Use yearly data over n + m years. With this option the regression model can
be written as:

Yt ' =b + b x t . + . . . . . + bk X
k

. + U .
1 1 2 2 1 tl tl (1)

[ :.] = [:.] B+[ :.J
where, t and i refer to year and quarter respectively. Weassume that:

(1) All the variables are flow variables;
(2) There is no laggedvariable in the equation;
(3) All the x variablesare non-stochastic;

(4) Uti is randomly distributed with E(Uti) =0 for all t and i; and
(5) E(ut ' U .)=0'2 forallt=sandi= j

'

I 8J

= 0 for all t"* s or i "*j.

where,
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Owing to assumptions (1) and (2) we can conveniently define yearly observa-
tions as:

4 X
2 ,1 Xk,1

4
X2,n+1 Xk,n+1

4

Yt =.l: Y t" for all t1=1 1
X= and X* =

4
X't = l: x .t ' for all t and j

J i=1 J 1

4
Ut =.l: Ut' for all t.1=1 1

4 X
2,n Xk,n 4 X2 n+m . ... Xk m, ,n+

The best linear estimator of B, its mean vector and variance-covariancematrix
are as follows. 1

Thus we can write Equation (1) for yearly observations as:
B = (X' X + x' X )

-1
(X' Y + X' Y )['" * * * *

Yt = 4b1 + b2 X2 t + +bk Xkt + Ut (2) E(B ) = B
[

where Ut satisfies the following obvious properties.

2
V(B[) = 4 0 (x' X + X~X *r1 (3)

(4') Ut is randomly distributed with E(Ut) = 0 for all t and
'It is assumedthat the matrix [X' X~] has full column rank k which is less than n + m.
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Option n

Use only quarterly data over 4m quarterly observations.
regressionmodel can be written as:

In this case the

y*=x*B+u*

where,

and B is the same as defined before.
The best linear estimator of B, its mean vector and variance-covariancematrix

under this option are:2

Bn = (x'*x*rl (x~y*)

E(Bn) = B

V(Bn) = a2- (x~x *rl (4)

Option III

Combine.4m quarterly and n yearly observations. Sincevariance of Ut is four
times as high as the variance of Uti' we have the problem of heteroscedasticity.
With pre-adjustment for heteroscedasticity, the model becomes: .

t.} r x. X]B+ r u. U]

where, Y, Y *, x, x *, U, u* and B are the same as defined earlier. With this option
the best linear estimator of B, its mean vector and variance covariance matrix are:

B =(~ X' X + x~x*rl (~ X' Y + x~Y*)In

2The matrix x * is assumed to have full column rank k < 4m. L
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E(B ) = BnI

V(Bm) = a2 (~X' X + x'*x *rl (5)

3. RELATIVEEFFICIENCY OF THE ALTERNATNE ESTIMATORSOF B

Since all the three estimators of B outlined above are unbiased, their relative
efficiency depends only on relative variances. For the comparison of variances we
will use the followingtheorem taken from Maddala(1977).

Theorem

If B is a positive definite matrix and A - B is positive semidefmite then
B-1 - A-I is positive semidefinite.

Proof

Since B and hence B-1 are positive definite and A - B is positive semidefinite,

the matrix B-1 (A - B) is positive semidefinite. Therefore the Equation IB-1
(A - B) - vI I has all roots v;;' O. But the roots of this equation are the same as the

roots of I(A - B) - vB 1 or IA - (1 + v)B Ior IB-1 - (1 + v)A-l I\ or IA(B-l -
A-I) - vI I. Thus all v ;;. 0 implies that A(B-l - A-I) is positive semidefinite.
Since B is positive definite and A - B is positive semidefini te, sum of the two, that is

-:4is positive defmite and so is A-I. Multiplying this positive definite matrix (A-I)

by the positive semidefmite matrix A(B-1 - A-I) gives a positive semidefinite
matrix B-1 - A-I. This completes the proof.

Let us now apply this theorem to compare variances of various estimators of

B. We will consider the variance of a linear combination of the elements of Br
(r = I. II, /II), namely e' B where, e is a k x 1 column vector of known constants.r

Var (e'BIII) Versus J1zr(e'BI)

Consider the following matrix.

(~X'X + x:.x*) - (~X'X + ~X'~*) = x:.x* - ~X:,.x*

The element in jth row and hth column of this matrix is:

n+m 4
~ ~ x.. x - ~

t=n+l i=1 Itl hti

4
( ~

i= 1

n+m
~

t=n+l
x' t .)

I I

4
( LX.) =

i=1 h tl

n+m 4
L Lex. . - x. ) (x - X ) =

t=n +1 i=1 Itl It hti ht

n+m
L

t=n+l

4
L

i=1 Zjti Zhti

f+'''j [+'.'

1 x ....

:k.n+L']

2 .n+l .1

u* = X =y*- ., , *

Yn+m,
1 x

2 .n+m,4 ....n+m, k,n+m,4
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where, Ziti = Xiti - x it' Zhti = x hti - x ht' x it =
4
~ x. ./4

i= 1 ltl

theorem implies that the matrix (x'* x *r1 - (% X' X + x;" x *r1 is positive
semidefinite.

Therefore we can write:

0'2 c'(x~x*r1c ~a2 c'(%X'X+x;"x*r1cand Xht =
4

.~ Xht./41=1 1

The above discussion impliesthat the whole matrix (%X'X + x~ *) - (%X'X
+%"x'~*) =x~* - %x'~* can be written as Z~*where,

This implies, according to Equations (4) and (5), that

var (c' B ) ~var (c' B ).II . III

xk,n+1,1 - xk,n+1

Xk,k+1,2 - x k,n +1

This result does not require any explanation. Addition of observations to a

given data set improv~s efficiency of the estimators.

Z* IDustration: One Explanatory Variable Case

Consider the case of one explanatory variable without intercept:

Yti = b x ti + Uti

0 x -x
2,n+m,4 2,n+m x -x

k,n+m,4 k,n+m

In this casethe varianceof b (r = I, II, IlI) can be calculated as follows:r

dearly, Z~ Z* = (%x' X +x~ x *) - (% X' X + %X~ X *) is positive semidefinite.
In addition, (% X' X + % X'* X *) is positive definite. Therefore, accordirlg to the
theorem, the matrix 4 (X' X + X~ X *r1 - (% X' X + x'* x *r1 is positive semi-
definite.

var (b[)

var (bII) =

4 a2 c'(x' X +X'*X*r1 c ~ a2 c' (%X' X +x~x*r1c.

Or, according to Equations (3) and (5) var (bm) =
a2

n
~

t=1

4

(i~ Xt/ +

n+m
~

t=n +1

4

i~ (xtif
%

var (c' B ) ~ var (c' B ).I III

Calling the denominator of b t as Dr respectively for r = I, Il and IIl, we can
show that:Notice that, if Xiti = Xit' that is, if there is no variation across quarters within a

year then Z',J,* is positive as well as negative semidefirlite. In this case var(c'B[)

is equal to var (c'B[II)' This is precisely what one should expect. If within a year
variation across quarters is zero then disaggregating yearly observations into quarterly
observations does not provide any additional information.

Var (c' Bm) Versus Var (c' BI) This implies that:

Now consider the matrix (%X' X +X:.X*) - x'*x *= %X' X which is obvious-
ly positive semidefinite. Since, in addition, x'* x * is positive defmite, the above

var (b ) < var (b ) unless X = x for t = n+1, . . ., n+mIII I ti tiI1 t = 1, , 4

0 x -x
2 ,n+1,1 2,n+1

0 x -x
2 ,n + 1,2 2 ,n +1

a2
n+m 4

% ( Xt/t=1 i=1

a2
n+m 4

(XtYt=n+1 i=1

n+m 4

Dm = D[ + . (Xt'- Xt)2 andt=n+1 1=1 1

n 4

Dm = DII + ( x y
t=1 i=1 ti
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4

var(bII/) < var(bI/) unless .~ x(" = 0 for t = 1, , n.1=1 1

S. CONCLUDINGREMARKS

Aggregation of quarterly data into yearly data for any part of the sample
period results in loss of efficiency. Using quarterly data alone when additional
yearly data are available also"resultsin loss of efficiency. The best use of the limited
data is to pool yearly observations with the quarterly observations with appropriate
adjustment for heteroscedasticity. The result can be generalizedto include seasonal
effects in the regressionequation. It can be shown that pooling yearly data to a given
set of quarterly data also improves efficiency of seasonaleffects although the yearly
data alone are uselessto estimate seasonal effects.3

The research can be extended to develop tests for autocorrelation of first or
fourth order (these are the most likely orders of autocorrelation at quarterly level).
Our preliminary research suggests that it is quite complicated to determine the order
of autocorrelation with pooled data. Once the order of autocorrelation is deter-
mined, one can use various procedures to improve the asymptotic efficiency of the
estimates.

Comments on

"Combining Yearly and Quarterly Data
in Regression Analysis"
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