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Risk Management in the Financial Services Sector—
Applicability and Performance of VaR
Models in Pakistan

SYEDA RABAB MUDAKKAR and JAMSHED Y. UPPAL

L. INTRODUCTION

Financial services sector has become a major driver of economic growth in the
developing countries through innovation in response to the forces of globalisation and
technology. Sound risk management practices by financial institution are critical to the
stability of the institutions and to the sustainability of economic growth. Therefore,
measurement of market risk is important to all market participants for devising risk
management strategies. Value-at-Risk (VaR) is the most widely used measure of
market risk, which is defined as the maximum possible loss to the value of financial
assets with a given probability over a certain time horizon. However, the task of
implementing the VaR approach still remains a challenge as the empirical return
distributions are found to be fat tailed and skewed in contrast to the normal distribution
as assumed in the theoretical models. An extensive literature in finance (e.g., Nassim
Taleb’s The Black Swan) underscores the importance of rare events in asset pricing and
portfolio choice. These rare events may materialise in the shape of a large positive or
negative investment returns, a stock market crash, major defaults, or the collapse of
risky asset prices.

In order to address the problems of heavy tails, VaR measures based on the
Extreme Value Theory (EVT) have been developed which allows us to model the tails of
distributions, and to estimate the probabilitics of the extreme movements that can be
expected in financial markets. The basic idea behind EVT is that in applications where
one is concerned about risk of extreme loss, it is more appropriate to separately model the
tails of the return distribution. At a more fundamental level, the issue is whether or not
the return distributions remain stable over time. EVT’s usage to model risk, however, still
assumes that the probability distribution parameters extracted from the historical data are
stable.
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Application of the EVT to the developing countries’ financial markets poses
special challenges. In particular, these offer only limited data histories while EVT uses
extreme observations which typical are rather rare. In addition, the return generating
processes may not be stable due to the evolving institutional and regulatory environment.
Global Financial Crisis of 2007-09 (GFC) has raised further questions as to the efficacy
of the financial models in risk management. The backdrop of the GFC, however, also
provides us with an historical experiment to examine the tails of stock return
distributions. During the GFC period stock market volatility increased many folds and
large swings in the stock prices were observed with an unprecedented frequency, thus,
providing us with a rich data set for applying EVT. Pakistan offers an instructive case
study since due to its turbulent political and economic environment its equity market has
experienced very high volatility and incidence of extreme returns, thereby, providing a
richer dataset. Yet the country has one of the oldest stock markets among the developing
countries with well-established institutions and regulatory structure.

Up till now only a few recent studies have examined the impact of GFC on the
stock market behaviour. Among these, Uppal and Mangla (2013) compare the tail
distributions of stock returns for the pre- and post-Global Financial Crises periods for ten
countries, and find that the distribution tails had different characteristics in the two
periods. Uppal (2013) tests the EVT-VaR model and reports that the model does not
describe the tail-risk in the US and the UK market well during the crisis period, though it
performed better in case of emerging markets. There have been other studies using EVT
following previous stock markets crashes and periods of high volatility in the developed
as well as the emerging markets. For example, Gencay and Selcuk (2004) employ VaR
models using EVT to a sample of emerging markets after the Asian financial crisis of
1998. Onour (2010) presents estimation of extreme risk in three stock markets in the Gulf
Cooperation Council (GCC) countries, Saudi Arabia, Kuwait, and United Arab Emirates,
in addition to the S& P 500 stock index, using the Generalised Pareto Distribution (GPD).
Djakovic, Andjelic and Borocki (2011) investigates the performance of the extreme value
theory for four emerging markets, the Setbian, Croatian, Slovenian and Hungarian stock
indices. Bhattacharyya and Ritolia (2008) suggest a Value-at-Risk (VaR) measure for the
Indian stock market based on the Extreme Value Theory for determining margin
requirements for traders. In the context of Pakistan, Igbal, Azher, and Ijaz (2010)
compare the accuracy of six different VaR models using Karachi Stock Exchange 100
Index (KSE 100) over the 1992-2008 period. They find that that VaR measures are more
accurate when return volatility is estimated by GARCH (1,1) model. Qayyum and Nawaz
(2010) compare two methods of applying the extreme value theory to compute VaR using
return series for KSE 100 over the 1993-2009 period. Nawaz and Afzal (2011) compare
the margin requirements based on KSE 100 index under different margin systems, and
conclude that a system based on VaR is most effective.

Compared to the earlier studies, this study examines the applicability and
performance of the risk models over the Global Financial Crisis period, employing back-
testing procedures for the equity market of Pakistan, the Karachi Stock Exchange (KSE).
Various techniques of measuring market risk based on the VaR and EVT approaches are
evaluated for the tail of the conditional distribution of KSE index return series over the
period January 2001-June 2012. In order to study the performance of the risk models
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over the GFC, we explicitly incorporate a GFC-dummy variable in our econometric
model, and also separately analyse the pre- and post-GFC periods. Motivated by the
approach suggested by McNeil and Frey (2000), we model the conditional quantiles of
the loss distribution under the dynamic framework. Our back-testing results show that the
procedure based on the EVT is applicable for modelling market risk, and seems to
perform better than methods which ignore the heavy tails of the innovations or the hetero-
skadasticity in returns. First part of our work considered the whole sample period,
whereas in second part we modelled the dynamic VaR measure for pre-crisis and post
crisis periods separately.

Our study addresses, firstly, the issue whether EVT can help in measuring and
managing tail risk in the emerging markets. Secondly, it addresses the issue of the
stability of parameters. Even if the EVT does adequately describe the extreme return
distribution, its applicability would be much restricted if the parameters of the
distribution were not stable. Our study finds that the KSE is characterised by tail-
distributions well described by EVT but with significantly different characteristics in
different periods, and suggests that the VaR models based on EVT and dynamic volatility
may be helpful in assessing market risk in the emerging markets.

II. EVT MODELS OF DISTRIBUTION TAILS

Value at Risk (VaR) is a high quantile (typically the 95th or 99th percentile) of the
distribution of negative returns and provides an upper bound on losses with a specified
probability. However, classical VaR measures based on the assumption of normal
distribution of the stock returns underestimate risk as the actual return distributions
exhibit heavier tails. One alternative to deal with the non-normality of the financial asset
distributions has been to employ historical simulation methodology which does not make
any distributional assumptions, and the risk measures are calculated directly from the past
observed returns. However, the historical approach sill assumes that the distribution of
past stock prices will be stable in the future.

Another approach is to use the Extreme Value Theory to construct models
which account for such thick tails as are empirically observed. According to EVT,
the form of the distribution of extreme returns is precisely known and independent of
the process generating returns [Fisher and Tippet (1928); Also see Longin (1996);
Longin and Solnik (2001) and Chou (2005); and Diebold, ef al. (2000)] for a note of
caution. The family of extreme value distributions can be presented under a single
parameterisation, known as the Generalised Extreme Value (GEV) distribution
[Embrechts, et al. (1997)].

There are two ways of modelling extremes of a stochastic variable. One approach
is to subdivide the sample into m blocks and then obtain the maximum from each block,
the block maxima method. The distribution of block maxima can be modelled by fitting
the GEV to the set of block maxima. An alternative approach takes large values of the
sample which exceed a certain threshold #, the peak-over-threshold (POT) approach. The
distribution function of these exceedances is then obtained employing fat-tailed
distributions models such as the Generalised Parcto Distribution (GPD). However, the
POT approach is the preferred approach in modelling financial time series.



51:4, 402 Mudalkkar and Uppal

In this paper, we use a semi-parametric approach based on the Hill estimator [Hill
(1975)] for the tail index. We assume that the distribution function underlying the data
satisfies, for some positive constant C,

-1y
1—F(x)~(%) ,as x = oo with y > 0.

Weissman (1978) proposed the following estimator of a high quantile (i.c., the
Value-at-Risk):

z:,:Xn_,m(n(lL_q))g )

Where X,,_p.,is the k-th top order statistic of the #» number of observations, ¢ be any
consistent estimator for ¢ and Z;, stands for quantile function at a given confidence level g.

Among various choices, for heavy tails, the classical semi-parametric Hill tail
index estimator used in Equation (1) is given by the functional expression

§=2yk i (f=im) RG>

Xn—k

The important step in this procedure is to determine the threshold (i.e., X,,_; ) for
identifying the tail region. It involves a trade-off: a very high threshold level may provide
too few points for estimation, while a low threshold level may render a poor
approximation. Several researchers, [e.g., McNeil (1997, 1999)] suggest employing a
high enough percentile as the threshold. We consider 95th percentile as the threshold, as
is typically recommended.

III. DYNAMICS OF VOLATILITY AND CONDITIONAL MEAN

Although EVT is an appropriate approach for modelling the tail behaviour of stock
returns, the assumption of constant volatility is contradicted by the well documented
phenomenon of volatility clustering i.c., large changes in assets values are followed by
large changes in either direction. Hence, a VaR calculated in a period of relative calm
may seriously underestimate risk in a period of higher volatility." The time varying
volatility was first modelled as an ARCH (g) process [Bollerslev, ef al. (1992)] which
relates time f volatility to past squared returns up to g lags. The ARCH (g) model was
expanded to include dependencies up to p lags of the past volatility. The expanded
models, GARCH (p,q) have become the standard methodology to incorporate dynamic
volatility in financial time series [see Poon and Granger (2003)]. Similarly the auto-
correlation of returns is significant in many situations and there is a need to also
incorporate the ARMA(m,n) structure in the model. Let (X, t € Z) be a strictly
stationary time series representing daily observations of the negative log returns on a
financial asset price. The dynamics of the model has the following specification:

Xi=w+ o,

!See Hull and White (1998) Acknowledging the need to incorporate time varying volatility VaR models
employ various dynamic risk measures such as the Random Walk model, the GARCH, and the Exponentially
Weighted Moving Average (EWMA). The Riskmetrics model uses the EWMA.
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Where 1, = X, and 6°~= w + a(X,—1)” + B o7y with w, o B0, and o + P
<1,whereo; is the volatility of the return on day ¢, 1, is the expected return and (X)) is the
actual return. We assume ; and o, are measurable with respect to G,_,, the information
set about the return process available up to time #—1. The stochastic variable, Z; represents
the residuals or the innovations of the process, and is assumed to be independently and
identically distributed.

In order to specifically capture any structural break the Global Financial Crisis, we
also fit an alternative AR(1)-GARCH(1,1) model with a dummy variable that captures
the effect of the onset of the GFC. The mean returns and the volatility of the process are
as follows:

w=¢ Xy +yDgpe and
6’=w +v Dgpe + aXet — per)’ + B oo,

where D equals zero for the period 1st January 2001 to 30th June 2008 and equals
one for the period after 1st July 2008.
Let Fy(x) denote the marginal distribution of (X;) and let Fr, 1160 (x) denote the

1-step predictive distribution of the return over the next day, given knowledge of returns
upto and including day 7. We're interested in estimating quantiles in the tails of these
distributions. For 0 < g <1, an unconditional quantile is a quantile of the marginal
distribution denoted by

x, = inf{x € R: Fy(x) = q}

and a conditional quantile that is a quantile of the predictive distribution for the return
over next day denoted by

x; = inf{x € R: Fixepy 160 () 2 3, where

F(xt+1|gt)(x) = P{otr1Zes1 + Mes1 £ X G} = F(( = Wer1)/Oer1 ),

and thus  x{ = py g + GpyiZg BN )

wherez, is the upper gth quantile of the marginal distribution of Z,, which does not
depend on 7.

IV. HYPOTHESIS, DATA AND METHODOLOGY

In this paper, we focus on the extreme returns experienced on the Karachi Stock
Exchange’s KSE100 index for the period January 1, 2001 to June, 2012 or 2972
observations for over 10 years. During the period the market experienced a number of
political and economic shocks, including the 9/11 terrorist attack, and the Global
Financial Crisis. The stock returns ; are measured as the first negative log differences of
the stock index; r, = —In (Index/ Index, ), since we are interested in the upper tail of loss
distribution.

Following the approach suggested by McNeil and Frey (2000), we apply EVT to
the residuals extracted from a GARCH model. Our estimation can be summarised as a
two-step procedure: (i) An AR(1)-GARCH(1,1) model is fitted to the historical return
data by pseudo maximum likelihood method. The residuals of this model are extracted;
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(i1) Hill estimation procedure is employed on the right tail of the standardised residuals to
compute VaR (Z), =7Z,. Finally the estimated dynamic or conditional VaR using
Equation (3) is:

RE =+ 20 L@

We also apply various tests and report test values and the achieved p-values to
verify our estimation procedure. First we apply the Augmented Ducky Filler test to see
whether the negative return series is stationary or not. After the stage (i), we apply
ARCH-LM test with the null hypothesis that there is no autocorrelation among the
residuals and squared residuals. Similarly after the stage (ii) of our estimation, we
consider the Cramer-von Mises (W?), Watson (U?) and Anderson-Darling (A?) criteria for
judging the goodness of fit of the cumulative distribution function for the estimated
parameters.

We further back-test the method on historical seriecs of negative log-
returns{xy, x,......, X, } from January 2001-June 2012. We calculate £ on day ¢ in the set
T={mm+1,.....,n-1} using a time window of m days each time. Similar to McNeil and Frey
(2000), we set m=1000, but we consider 50 extreme observations from the upper tail of the
innovation distribution i.¢., we fix /=50 each time. On each day ¢t € T, we fit a new AR(1)-
GARCH(1,1) model and determine a new Hill tail estimate. We compare ff{ with x;,, for
q € {0.95, 0.97, 0.99, 0.995}. A violation is said to occur whenever x,,, > ff{ . We then
apply a one-sided binomial test based on the number of violations for the model adequacy.

We also compare the method with four other well-known parametric methods of
estimation. First one is the Static Normal method in which returns are assumed to be
normally distributed and the VaR is calculated as the gt/ upper quantile from the normal
distribution. Second one is the Dynamic or Conditional Normal in which AR(1)-
GARCH(1,1) model with normal innovations is fitted by the method of maximum
likelihood to the return data and ff{ is estimated. Third one is the Conditional ¢ in which
innovations are assumed to have a leptokurtic distribution and the AR(1)-GARCH(1,1)
model with -innovations is fitted to the return data. Last one is the Static EVT method in
which returns are assumed to have fat-tailed distribution and extreme value theory is
applied to the upper tail of the returns.

After studying the time-line of the progression of the GFC, we mark the onset of
the down turn in the stock markets as the first of July, 2007. This serves to divide our
study in two sub-periods of 1158 observations each and model the dynamic Risk measure
for two periods separately.

V. RESULTS

(i) Modelling

We use EVIEWS 5.0 and R 2.15.1 for the analysis. The table in the following
exhibit provides descriptive statistics for the KSE 100 for the period covered in the study,
computing market returns as negative first log differences in the index values; Rt = —in
(Indexy Index, ;). The exhibit also shows the distribution of the returns and a QQ-plot
against normal distribution.
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Table 1

Results from AR-GARCH Estimation
Depend. Variable: Negative Returns
Method: ML - ARCH (Marquardt) - Normal Distribution
[ncluded observations: 2971 after Adjustments
Without Dummy With Dummy
Coef.  Std. Error  z-Stat Prob. Coef.  Std.Error  z-Stat Prob.

Mean Eq.

AR(1) 0.0641 0.0190 3.3650 0.0008 0.0631 0.0193 3.2635 0.0011
DUM1 Variance Eq. 0.0008 0.0004 22125 0.0269
C 9.33E-06 6.89E-07 13.5508 0.0000 1.12E-05 8.67E-07 12.8661  0.0000
RESID(-1)"2 0.1486 0.0102  14.5711  0.0000 0.14688 0.01049 13.9996  0.0000
GARCH(-1) 0.8073 00104 774652  0.0000 0.8059  0.0104 77.5187  0.0000
DUMI1 -3.83E-06 6.45E-07 -5.9339  0.0000
Durbin-Watson 1.9263 1.9228

Source: Author calculation.

Next the ordered residuals are used to estimate the right tail index using Equation
(2). Table 2 provides results for the estimation of parameters on the right tail of the
distribution. We fix the threshold by rounding off 95th percentile value.

We ran the Goodness-of-Fit test (given in Appendix A) to see whether the fitted
model to the right tail of the innovation distribution (which represents losses) is
appropriate and we found that the p-values for all three different tests are insignificant. It
implies that the parameter estimates obtained in Table 4 are tenable.

Table 2

Results from Tail-index Estimation
Method: Maximum Likelihood (Exact Solution)

Parameter Value Std. Error z-Statistic Prob.
Threshold, 3 2.1597

Tail Index (1/&) 3.4709 0.4548 7.6317 0.0000
Log Likelihood —52.8886 Mean dependent var. 2.9976
No. of Coefficients 1 S.D. dependent var. 0.9595

Source: Author calculation.

After specifying our models completely by estimating the parameters, we can now
calculate the dynamic VaR estimates by using Equation (3). We first calculate the 95th
percentile of innovations. The value of Z; o5 =VaR(Z)gs is found out be 2.16346. Using
Equation (3), our dynamic VaR specification for the #+7 day is:

VaR: .. = iy +2.16346 5,05 ... .. 03
where [i;,; and G;,; are conditional GARCH estimates of mean and volatility
respectively.

(ii) Back-testing

We then proceed to conduct back-tests using methodology explained in the Section
IV. Table 3 provides the back testing results with theoretically expected number of
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violations and the number of violations using five different models: (i) Dynamic EVT or
GARCH-EVT model, (ii)) Static EVT model, (iii) a GARCH model with Student t
innovations, (iv) a GARCH-model with normally distributed innovations; and (v) a Static
normal model in which returns are assumed to be normally distributed.

Considering a 5 percent level of statistical significance, we may consider a p-
value<.05 as a failure of the model. It is found that Dynamic EVT correctly estimates all the
conditional quantiles, since the p-value is greater than 5 percent at all quantile levels. The
method is very close to the mark in 3 out of 4 cases. Static EVT method fails at 95 percent,
99 percent and 99.5 percent. Dynamic-t fails at 95 percent and 97.5 percent, but performs
well at higher levels ie., it is closest to the mark at 99 percent and 99.5 percent. This
indicates that GARCH model with t-innovations can also provide a good fit at higher levels.
Dynamic normal fails at all but the 95 percent, whereas Static normal fails at all levels. The
results show that the Value-at-Risk models based on the time-varying volatility work better
than the Static models. The distribution of the tails of innovations is better modelled using
the Extreme Value Theory or t-distribution instead of normal distribution.

Table 3
Back-testing Results
Quantile 95% 97.5% 99% 99.5%
Length of Test 1972 1972 1972 1972
Expected # Violations 99 49 20 10
DYNAMIC-EVT
Observed # Violations 96 49 18 6
p-value 0.4199) (1.0000) (0.4046) (0.1386)
STATIC-EVT
Observed # Violations 78 46 6 1
p-value 0.0164) (0.3503) (0.0003) (0.0001)
DYNAMIC-t
Observed # Violations 122 63 22 10
p-value (0.0107) (0.0321) (0.3323) (0.8730)
DYNAMIC-NORMAL
Observed # Violations 86 55 25 21
p-value (0.1782) (0.0236) (0.0021) (0.0006)
STATIC NORMAL
Observed # Violations 111 79 51 30
p-value (0.1108) (0.0000) (0.0000) (0.0000)

Source: Author calculation.

We also repeated the back-testing procedure for the Dynamic models after
including structural break dummies (results not reported here), and found that it did not
materially alter the results. This attests the robustness of our analysis.

(iii) Pre- and Post-Crisis VaR Estimation

Next we subdivided the total study period from January, 2003 to June, 2012, into
two even sub-periods of 1158 observations each, as follows:

1. Pre Crisis Period: 01/22/2003 to 06/29/2007
2. Crisis Period: 07/02/2007 to 06/12/2012
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Table 6

Results from Tail-index Estimation and Goodness-of-Fit Tests
Estimation of Empirical Distribution

KSE 100 Pre-crisis Period Crisis Period

Test of Distribution Fit Value Prob Value Prob
Cramer-von Mises (W2) 0.125642 02116  0.07799 0.4628
Watson (U2) 0.105444 0.1710 0.057925 0.5048
Anderson-Darling (A2) 1.019529 0.1069 0.634751 0.3235
Parameter Estimate Value z-Stat Prob. Value z-Stat Prob.
Threshold, B 2.2301 2.194

Tail Index (1/€) 42475 48497  0.0000 3.9022 4.5361 0.0000

Source: Author calculation.

After specifying our models completely by estimating the parameters, we can now
calculate the dynamic VaR estimates by using Equation (3) for the Pre-Crisis and the
Post-Crisis periods separately.

We first calculate the 95 percentile VaR for Pre-Crisis period. The value of
Zpos =VaR(Z)o975 is found out be 2.242052. Using Equation (3), our dynamic VaR
specification for Pre-Crisis returns is:

VaR{prgyo0s = C +2.242052 Gy, (5

Where C is the estimate of constant.

We now report the 95 percentile VaR for Post-Crisis period. The value of
Zoos =VaR(Z)og75 is found out be 2.256842. Using Equation (3), our dynamic VaR
specification for Post-Crisis returns is:

VaR posry0s = Fart + 2256842 G5h7, .. (6)

A comparison of (5) and (6) shows that there is not much difference in the
coefficients on the conditional volatility. Since, the mean of the returns is very small, the
number of violations under the VaR models will be mostly determined by the conditional
volatility. In case the coefficients on the conditional volatility are almost equal, the
number of violations is also going to be about the same. This is in conformity with the
results of our back-testing using models with structural dummy variables.

VL. CONCLUSIONS AND POLICY IMPLICATIONS

A major shortcoming of various VaR measures has been that the actual return
distributions exhibit fatter tails than the normal distribution would specify. As a remedy
the FExtreme Value Theory (EVT) has been employed to explicitly incorporate extreme
values, and to modify VaR accordingly. Typically, there would be limited number of
extreme observations during a given period, which makes it hard to test and apply EVT
as parameters are estimated with low levels of confidence. The equity market in Pakistan
provides an excellent case to study the applicability of the EVT theory in a developing
country since it exhibits a high degree of volatility reflecting a risky political and
economic environment. The recent global financial crisis has been another source of
extreme returns. The confluence of the two sources of volatility provides us with an
historic experiment to test the EVT more rigorously.
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