## Inflation Dynamics in Pakistan: Evidence based on New Keynesian Phillips Curve

by

Wasim Shahid Malik Ather Maqsood Ahmed Ahsan ul Haq

## Background of the Issue

Old Phillips Curve



$$\pi_t = f(u_t) \qquad \pi_t = \alpha_1 y_t$$

#### Long run Phillips Curve



$$\pi_{t} = \sum_{i=1}^{k} c_{i} \pi_{t-i} + y_{t}, \sum_{i=1}^{k} c_{i} = 1$$

### Rational Expectations Revolution

- Expectations are rational
- Outcome
- Lucas supply curve (1972)

$$y_t = \overline{y} + b(\pi_t - \pi_t^e)$$

New classical economics--- micro foundations

#### Staggered Price Adjustment Model

- New classical were lacking market imperfections
- Keynesians ---- market foundations, RE
- Fischer (1977)----- Overlapping Wage Contract
- Taylor (1979), same with prices
- Calvo (1983) adding probability

#### New Keynesian Economics

- Basis for the supply side of the new Keynesian economics (Fischer, Taylor, Calvo)
- Demand side, McCallum and Nelson (1999)
- Outcome
- New IS curve
- New Phillips Curve

### New Keynesian Phillips Curve

(Gali and Gertler (1999))

- Calvo (1983) model,
- Firm faces 1- $\delta$  probability of price adjustment,  $\delta$  of not changing

$$p_{t} = \delta p_{t-1} + (1 - \delta) p_{t}^{*}$$

$$p_t^* = (1 - \beta \delta) \sum_{q=1}^{\infty} (\beta \delta)^q E_t[mc_{t+q}]$$

#### New Keynesian Phillips Curve

(Gali and Gertler (1999))

Linear approximation around steady state

$$\pi_t = \Phi mc_t + \beta E_t[\pi_{t+1}],$$
 
$$\Phi = \frac{(1-\delta)(1-\beta\delta)}{\delta}$$
 New Keynesian Phillips Curve

$$\pi_{t} = \Theta y_{t} + \beta E_{t}[\pi_{t+1}],$$

$$\Theta = \Phi r$$

#### Policy Implications of NKPC

$$\pi_t = \sum_{i=1}^k c_i \pi_{t-i} + y_t$$

$$\pi_t = \Theta y_t + \beta E_t[\pi_{t+1}]$$

- In old PC, deflation is costly and a lengthy process
- In NKPC, monetary authority can costlessly and immediately deflate

#### Hybrid Phillips Curve

(Gali and Gertler (1999))

Furher and Moore (1995)

$$\begin{aligned} p_t &= \delta p_{t-1} + (1 - \delta) \overline{p}_t^* \\ \overline{p}_t^* &= (1 - \lambda) p_t^f + \lambda p_t^b \\ \pi_t &= \Phi m c_t + \rho^f E_t [\pi_{t+1}] + \rho^b \pi_{t-1} \end{aligned}$$

#### **Estimation Issues**

Issue 1

$$\pi_{t} = \Theta y_{t} + \beta E_{t}[\pi_{t+1}]$$

Lag this equation one period and assume  $\beta=1$ ,

$$\pi_{t} = -\Theta y_{t} + \pi_{t-1}$$

$$\pi_{t} = cy_{t} + \pi_{t-1}$$

$$\pi_{t} = 0.192y_{t-1} + \pi_{t-1}$$
(0.16)

#### **Estimation Issues**

- Issue 2
- Production function
- Labor income share is the real unit labor cost
- Issue 3

$$\pi_{t} = \Phi m c_{t} + \beta E_{t} [\pi_{t+1}]$$

$$E_{t} [(\pi_{t} - \Phi m c_{t} - \beta \pi_{t+1}) Z_{t}] = 0$$

Orthogonality condition provides basis for GMM estimation

#### Reduced Form NKPC

$$\Pi_{t} = 0.05 \text{mc}_{t} + 0.62 \text{E}_{t} [\Pi_{t+1}]$$
(0.02) (0.16)

Problem with estimating NKPC using ad hoc output gap

$$\pi_{t} = -0.15y_{t} + 0.93E_{t} [\pi_{t+1}]$$
(0.09) (0.04)

# Structural EstimatesNon-Linear GMM

|       | δ                            | β                 |
|-------|------------------------------|-------------------|
|       | (Degree of price stickiness) | (Discount factor) |
| OC-I  | 0.90                         | 0.59              |
|       | (0.01)                       | (0.17)            |
| OC-II | 0.91                         | 0.62              |
|       | (0.01)                       | (0.16)            |

- Hybrid Model
- Reduced form evidence

$$\Pi_{t} = 0.04 \text{mc}_{t} + 0.61 \text{ E}_{t} [\Pi_{t+1}] + 0.02 \Pi_{t-1}$$
(0.02) (0.16) (0.11)

- Structural Estimates of the Hybrid Model
- Non-Linear GMM

|       | (Degree of price stickiness) | β<br>(Discount factor) | <b>P</b><br>(Degree of backwardness<br>in price setting) |
|-------|------------------------------|------------------------|----------------------------------------------------------|
| OC-I  | <b>0.91</b> (0.10)           | <b>0.62</b> (0.02)     | <b>0.02</b> (0.16)                                       |
| OC-II | <b>0.90</b> (0.01)           | <b>0.68</b> (0.10)     | <b>0.08</b> (0.14)                                       |

#### Conclusion

- Pakistani data supports NKPC
- We could not find support for Furher and Moore (1995) one-half rule on the basis of Pakistani data
- Degree of backwardness in price setting is very low
- NKPC should not be estimated using output gap

# **Policy Implications**

Monetary authorities should consider Forward looking behavior of inflation while setting monetary policy instrument, especially at the time of monetary contraction

#### Future Research

Why is the degree of backwardness in price setting is so low in Pakistan?

 Why is the relationship not proportional between output gap and real marginal cost

# Thanks for your patience