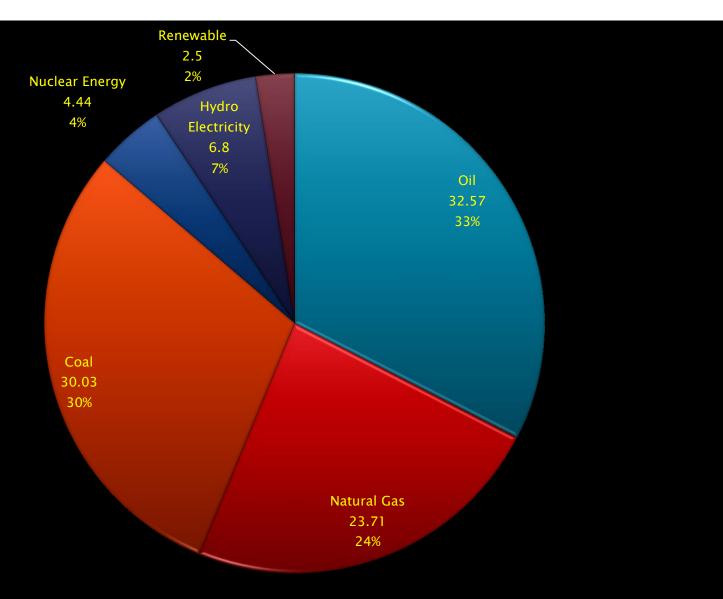


Sustainable Energy Efficiency Index: A case Study>> of SAARC countries

Maryam Asim

Outline


- World Energy Outlook
- Energy Sector of Pakistan
- Significance of the Study
- Objectives of the Study
- Methodology
 - Data
 - Variables
 - Sustainable Energy Efficiency Index
 - Data Envelopment Analysis
 - Malmquist Productivity Index
- Results & Discussion

World Energy Outlook

Highlights

- Projected Global Energy demands to grow by 33% higher by 2040.
 - OECD
 - Non-OECD
- Major role players: India, China, Africa, the Middle East & South-East Asia.
- Reduction in annual growth rate.
- 17% of the global population remain without electricity.
- Energy-related Carbon emissions projected to be 16% higher by 2040, increasing at the rate of 2.4% per year since 2000.

World total energy Consumption by fuel in 2014

Energy Sector of Pakistan

- Total Primary Energy Consumption: 38.8 MTOE
- Fuel contribution:
 - Natural Gas: 43.2%
 - Oil: 29%

Significance of the Study

- Climate Summit in Paris (COP21)
- Pakistan: a minor contributor but a worst victim of Climate Change.
- Contributes 0.8% of total global GHG emission and 0.5% of total Carbon emission.
- Widening Deficit in supply and demand of energy

Objectives of the Study

Overall Objective:

- Analyze the role of energy sector in Environmental degradation and Economic growth
- Explicit Objectives:
 - Develop Sustainable Energy Efficiency Index
 - Estimate Scale efficiencies
 - Analyze the patterns of change in efficiencies over time
 - Policy formulation

Data Collection

- The present study is based on the secondary source of data consisting annual observations on SAARC countries for the years 2004-2007.
- INPUT: Energy use per capita (E)
- OUTPUT: Gross Domestic Product per capita
 (GDP) & CO₂ emissions per capita (C)
- SOURCE: World Development indicators

Variables

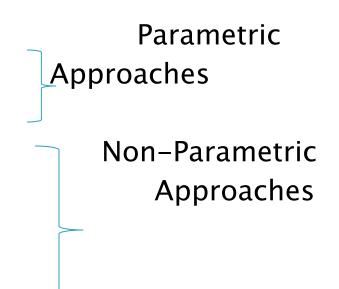
- > Energy use in kg of oil equivalent per capita
- GDP per capita (current US\$)
- CO₂ emissions (metric tons per capita)

Energy Sustainable Index

- Energy sustainability : A guarantee that the energy resources are preserved for the coming generations.
- Methods for assessing Energy Sustainability
 - Aspect of Sustainability
 - Type of data Employed
 - Time Span

Measuring Efficiency

Uni-dimensional Methods:


Performance Indicators

Mutli-dimensioanl Methods:

- Frontier Approaches
 - Stochastic Frontier Analysis
 - Corrected Ordinary Least Squares
 - Data Envelopment Analysis
 - Malmquist Productivity Index

Parametric Approaches Non-Parametric Approaches

- Non-Frontier Approaches
 - Linear Programming
 - Econometric Methods
 - Growth Accounting Equation
 - Divisia Index
 - Exact Index
 - Tornqvist Index

Energy Sustainability Index

- Energy efficiencies obtained using the output oriented models estimated such that for the given levels of energy input:
 - maximizes the economic growth
 - minimizes the carbon emissions at the same time.

Methods Employed in Study

Which:

- Data Envelopment analysis
- Malmquist Productivity Index

• Why:

- Incorporate multiple inputs and outputs
- Does not require functional form
- Variables can have different units of measurements
- Provide direct comparison by the means of peers

Data Envelopment Analysis

- Introduced by Farrell (1957)
- Estimate productivity efficiency taking into account all the inputs.
- Based on linear programming for assessing the relative efficiency of DMUs.
 - DMU: Decision Making Units that operates a production process that converts inputs into outputs.

Basic DEA Models

- A basic DEA model assumes K inputs and M outputs on each of N DMUs.
- Constant Return to Scale (CRS) Model
 - Introduced by Charnes, Cooper and Rhodes (1978)
 - Based on the Radial minimization of all inputs and maximization of all outputs.
 - Assumes an environment of Constant return to scale.
 - Provides an estimate of Technical efficiency

Variable Return to Scale (VRS) Model

- Introduced by Banker et al. (1984)
- Provides estimates of the Pure Technical Efficiency.
- Impose a convexity constraint on the CRS model

Scale Efficiencies:

Scale Efficency =
$$\frac{TE_{CRS}}{TE_{VRS}}$$

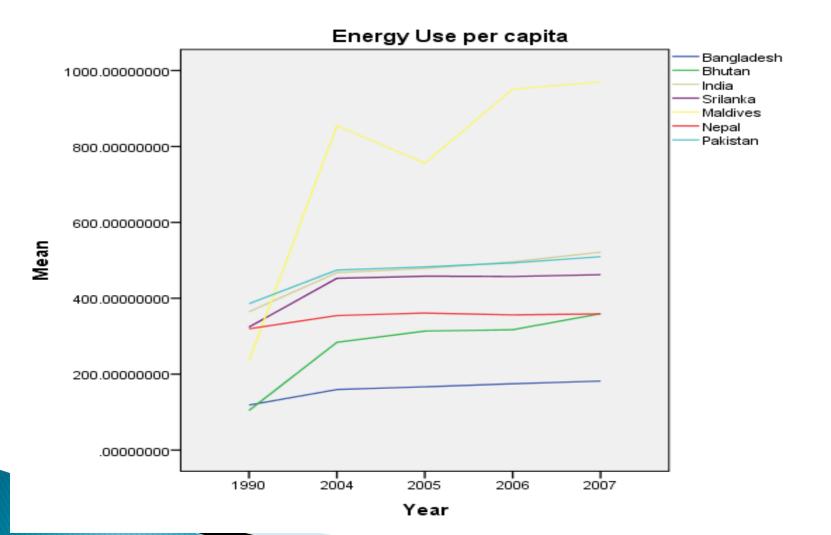
Malmquist Productivity Index (MPI)

- Introduced by Fare et al. (1994, 1996)
- Measures Productivity Growth as the weighted sum of the sectoral rates
- Assumes the inputs are explicitly known and efficiently allocated among the sector.
- Output Based MPI is given as:

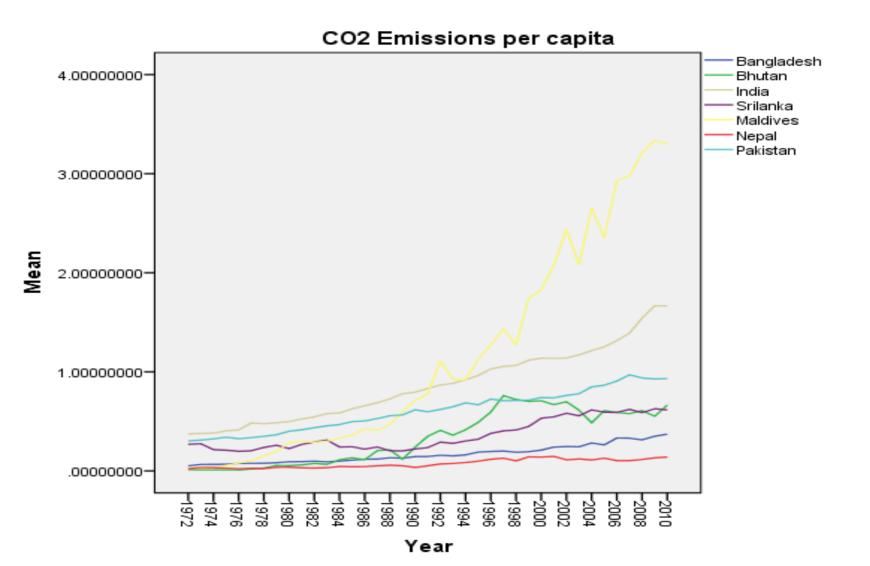
$$M_0(t,t+1) = \left[\frac{D_0^t(x^{t+1}, y^{t+1})}{D_0^t(x^t, y^t)} \frac{D_0^{t+1}(x^{t+1}, y^{t+1})}{D_0^{t+1}(x^{t+1}, y^{t+1})}\right]^{\frac{1}{2}}$$

- MPI > 1 indicates Positive TFP growth
- MPI can be represented as the geometric mean of the effect of the technological change.

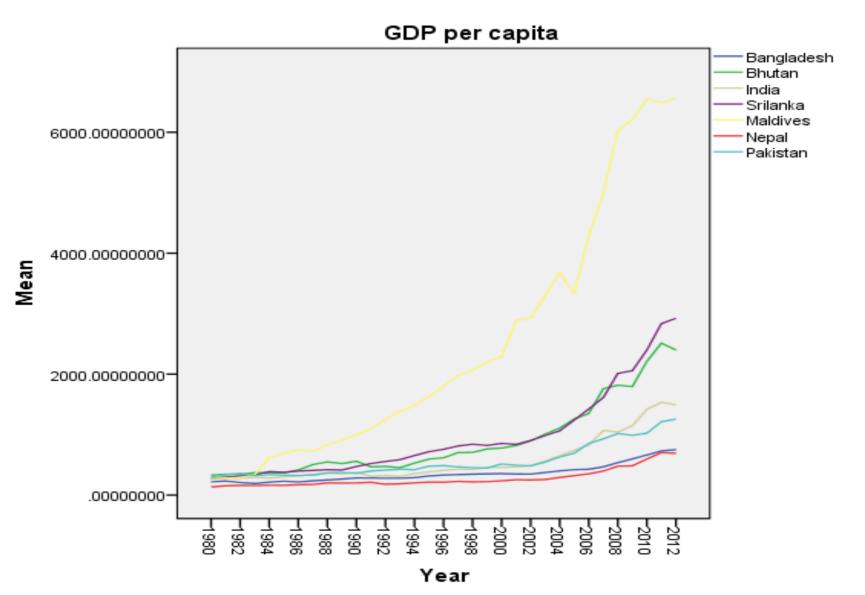
 $M = TE \times TC$


Where TE = Technical efficiency

TC = Average Technological Change over Time.


Results & Discussion

- Descriptive Analysis
- Energy Sustainable Index
- Patterns of Change in efficiencies


Energy Use Per Capita

Carbon Emission per capita

GDP per capita

Country	CRS Efficiency	VRS Efficiency	Scale Efficiency	Peers
Bangladesh	1	1	1	
Bhutan	1	1	1	
				Maldives, Nepal,
India	0.345	0.356	0.969	Bangladesh
Maldives	1	1	1	
Nepal	1	1	1	
				Maldives,
				Bangladesh,
Pakistan	0.341	0.369	0.924	Nepal
				Maldives,
				Bangladesh,
Srilanka	0.591	0.62	0.954	Nepal
Mean Efficiency	0.754	0.764	0.978	

Country	CRS Efficiency	VRS Efficiency	Scale Efficiency	Peers
Bangladesh	1	1	1	
Bhutan	1	1	1	
				Maldives,
				Bangladesh,
India	0.379	0.38	0.995	Nepal
Maldives	1	1	1	
Nepal	0.945	1	0.945	
				Maldives,
				Bangladesh,
Pakistan	0.368	0.389	0.944	Nepal
				Maldives,
				Bangladesh,
Srilanka	0.678	0.691	0.982	Nepal
Mean Efficiency	0.767	0.78	0.981	

Country	CRS Efficiency	VRS Efficiency	Scale Efficiency	Peers
Bangladesh	0.995	1	0.995	
Bhutan	1	1	1	
				Maldives, Nepal,
India	0.386	0.396	0.975	Bhutan
Maldives	1	1	1	
Nepal	1	1	1	
				Maldives, Bhutan,
Pakistan	0.408	0.429	0.951	Nepal
				Maldives, Nepal,
Srilanka	0.729	0.757	0.963	Bhutan
Mean Efficiency	0.788	0.798	0.983	

Country	CRS Efficiency	VRS Efficiency	Scale Efficiency	Peers
Bangladesh	0.948	1	0.94	
Bhutan	1	1	1	
				Maldives, Nepal,
India	0.411	0.417	0.984	Bhutan
Maldives	1	1	1	
Nepal	1	1	1	
				Bhutan, Maldives,
Pakistan	0.379	0.396	0.958	Nepal
				Maldives, Nepal,
Srilanka	0.714	0.737	0.968	Bhutan
Mean Efficiency	0.779	0.793	0.98	

Patterns of Change in Efficiency (2004–2007)

	Technical Efficiency	Technological	VRS Technical Efficiency	Scale Efficiency	Malmquist Productivity
Country	Change, TE	Change, TC	Change	Change	Index
Bangladesh	0.982	0.976	1	0.982	0.959
Bhutan	1	1.055	1	1	1.055
India	1.06	1.061	1.052	1	1.124
Maldives	1	1.062	1	1.008	1.062
Nepal	1	1.021	1	1	1.021
Pakistan	1.03	1.048	1.045	1	1.085
Srilanka	1.065	1.056	1.064	0.991	1.125
Mean Efficiency Change	1.02	1.039	1.023	1.001	1.06

Conclusion

Year-wise Energy Sustainability Indices

- Most Efficient Countries: Bhutan, Maldives
- Least Efficient Countries: Pakistan, India

Change in Productivity over time

- MPI suggests an overall positive change (1.02%) in TE of the region.
- An increase in Technological Change (1.04%)
- Region is more inclined toward Technological improvement rather than Technical improvements.

- MPI reveals progress in terms of environmental related energy efficiency for the whole region except Bangladesh.
- India and Srilanka have shown highest progress in this regard.
- The highly efficient Maldives owes it efficiency to the Technology.

Policy recommendations

- SAARC countries need to divert towards technical efficient paradigm for a sustainable economic growth.
- Pakistan has a long struggle ahead in energyenivronment-growth nexus.
- Pakistan needs to adapt the policies by its peer indicated by the analysis.
- The energy sector of Pakistan needs institutional reforms to increase the energy efficiency via technological achievements

Thank You