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Introduction [to smoothing a time series] 

• Smoothing a time series is very common 

amongst Economists for studying business 

cycles 

• Simplest approach to estimate trend is moving 

average 

• Sophisticated approaches are like HP filter.   



Issues with HP Filter and Solutions 

• Fixed Value of Lambda. This issued is addressed by 
McDermott (1997) and evaluated by Choudhary et 
al (2014) – Modified HP Filter (endogenous 
lambda).  

• End Point Bias (EPB). This issue needs to be solved: 
1. Solution suggested in the literature is to extrapolate the 

given time series and then apply the filtering technique. 
We assessed this approach in one paper by conducting 
a simulation as well as empirical study.   

2. Better solution is to directly hit the bias and minimize 
it. We introduce a Fully Modified HP filter in this study 
(endogenous lambda and endogenous weighting 
scheme).  



Understanding EPB in HP/MHP Filter 

• HP Filter [Hodrick Prescott (1997)] to MHP Filter [McDermott (1997)] 

 yt = gt + ct ,        t = 1, 2, 3,.  .  . , T        (1) 

HP filter estimates a cyclical series (ct)  by minimizing the sum of square of difference between series 

(yt)  and its trend part ( gt) subject to the constraint that  the squared sum of dynamic differences of 

the trend is not too large.  

g t = [I + λA]−1yt         (3) 

Where A = K′K where K =  kij  is a (T-2) T matrix with elements as given below 

kij =  
1   if j = i or j = i + 2,

−2   if  j = i + 1,                  
0   otherwise                  

  

Modified HP filter of McDermott (1997) relaxes this (assumption of) fixed values of λ as explained in 

Choudhary et.al (2014). The idea of this procedure is to apply HP filter method (in equation 3) by 

excluding a single data point at a time and select a λ which gives best fit of the data point left out. The 

emphasis therefore is on selecting an optimal value of λ with reference to the subject time series. 

The optimal value of λ can be obtained by minimizing the following equation with respect to λ. 

GCV λ = T−1(1 +
2T

λ
)  (yk − gt,k λ )2T

k=1                                                             (4) 

In this way smoothing parameter stands endogenous (to observed data).  

𝑚𝑖𝑛  (𝑦𝑡 − 𝑔𝑡)2 + 𝜆  [ gt+1 − gt −  gt − gt−1 ]2𝑇−1
𝑡=2

𝑇
𝑡=1                                    (2) 



End Point Bias 
In order to carry out a trend-cycle decomposition of a time series at a given date, HP filtering 

requires information about the behavior of the series at earlier as well as at later dates. Absence 

of end and start observations (as is evident from equation 2) poses difficulties at the start and the 

end of the sample resulting changes in terminal points weights and thus causing in substantial 

distortions in cyclical component at both ends. This is what has been termed as end-point bias in 

the literature.  

HP filter is a symmetric filter in the sense that the estimator  𝑔 𝑡  (equation 3) is the weighted sum 

of both lags and leads of yt . Due to the missing values at both ends, the whole weighted matrix B 

in equation (3) is distorted with highest effect on boundaries and lowest at the middle of data set. 

This can be seen from Figure (1) where we plot the ‘weighting vectors’ corresponding to 𝑔 𝑡  for a 

HP-filter with 𝜆 = 100  applied to a series with 50 data points.  



End Point Bias (Lambda = 100, T=50) 
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End Point Bias 

We can see that as we go to the middle of data set we have symmetric weighting vector and to 

the boundaries the filter weights become more and more asymmetric. It can be observed that the 

highest weight at the margins is disproportionately large compared to those at the middle (of the 

time series). Hence the estimation at the end points is effected by disproportionately large 

weights at terminal points.  This behavior of HP filter weighting scheme causes the biasness at 

(up to 20 observations on) both ends in the extracted cyclical component.   

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

W

e

i

g

h

t

s

 

t (=1 to 50) 

Figure 1: Weighting vectors of HP filter with Lambda 100  
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End Point Bias 
To further understand the distortion at the terminal points of the estimated trend component of 

time series using HP filter, we can consider HP filter in frequency domain.   

Going back to equation (3) we see filter weights are contained in matrix [𝐼 + 𝜆𝐴]−1 = 𝐵𝑇×𝑇 , 

where B is symmetric matrix and its  𝑡𝑡ℎ  row contains the weights for the estimation g t 

g t =  btj yj
T
j=1                 (5) 

Where btj  is the 𝑗𝑡ℎ  element of the 𝑡𝑡ℎ  row of B. These weights have symmetric structure in the 

middle and change its shape near the boundaries.  

In the frequency domain a time series is interpreted as the overlap of oscillations with different 

frequencies where the trend as a long run behavior (of a series) is supposed to consist of those 

oscillations with high periodicity. In the estimation of trend component, HP filter extract 

oscillations with high periodicities and eliminates oscillations with lower periodicities. This 

behavior can be explained by a gain function. By using filter weights in matrix B for a given 

value of lambda, the gain for estimation g t   at different frequency level can be calculated as  

Pt ω, λ =    bt,j+tcos(ωj)T−t
j=1−t  

2
+   bt,j+tsin(ωj)T−t

j=1−t  
2
                          (6) 

 

Bloechl (2014) explained that this gain can be interpreted as a factor by which the amplitude of 

an oscillation with a certain frequency is decreased or increased by a filter. Taking T=50 we 

plotted this gain (Pt) in Figure 2 for t=1, 3, 25, 26, 47, and 49. By construction (of HP filter) 

weights are different for middle and terminal points.  



End Point Bias 

We can see in this figure how gain is affected by changing the weights (i.e. for middle and 

terminal points): for the estimations at the middle (like, 25
th

 and 26
th

) we see very similar gain as 

they depend upon an almost equal weight structure and the gain starts to change as we move to 

the boundaries (like for the 1
st
, 3

rd
, 47

th
 and 49

th
 estimations). Thus, for the estimation at end 

points the high frequencies cannot be completely eliminated anymore which causes an increasing 

volatility in the trend component. So the trend estimates at terminal points contain part of the 

cyclical component and is thus distorted. Resulting in larger than should be standard deviation in 

trend component (and hence lower than should be standard deviation in cyclical component). 



End Point Bias 
To quantify the distortion at the terminal data points in trend component Bloechl (2014) 

introduced a loss measure in the form of deviation of gain function of certain estimation  g t from 

the one at the middle (centre) where we know distortion is negligible. This loss is what one 

would like to minimize. If Pc ω, λ  denotes the gain for frequency ω and parameter λ for the 

centre estimation  g c  , where c=T/2, and  Pt ω, λ  is the gain for estimation g t  then the loss 

function is 

l t, λ =   Pc ω𝑖 , λ − Pt ω𝑖 , λ  2n
𝑖=1 .                                         (7) 

We use ω=(0, 0.1, 0.2, . . ., )
/
 . Here, n is number of elements in ω and  is the distance between 

the element in ω i.e.  = ωj − ωj−1 = 0.1. Calculating the loss for all t=1, 2, . . .,T gives an 

overview of distortions at the estimations (for the trend) on terminal points (Figure 3).  To 

eliminate the EPB, the ideal weighting scheme would be the one which gives zero overall loss. 

We discuss Bloechl (2014) and our weighting schemes to address the EPB later. 



Existing Solution (extrapolation) 

One way to handle this issue is to extend data from both ends (Mohr (2005)) before applying HP 

filter to decompose the time series of interest. There are different ways to extend data. Kaiser and 

Maravall (1999) and Denis et al (2002) suggested to use ARIMA (p,d,q) model for extrapolating 

the data at both ends.  



Critical Evaluation of Existing Solution 

We think this is not a proper solution of end point biasness in HP filtering as the choice of DGP 

for extending the subject series in itself is biased simply because we do not know the true DGP 

of the series of interest.   



Any other solution?  

Yes 



Bruchez (2003) proposed a new mechanism of changing the weighting scheme in the HP filter: 

for certain values of t, 𝑔𝑡  term appears less often in the second part of equation (2) so increase 

the corresponding value of λ for those values of t. More specifically, since first and last value 

appears only once, 2nd and 2nd last value appears twice and all other values appears three times 

in second part of equation (2), he proposed to multiply lambda by 3 for first and last values, and 

by 3/2 for second and second last values. We believe that Bruchez (2003) approach to handle 

EPB also has shortcomings including a) Bruchez (2003) uses arbitrary numbers (3 and 3/2) to 

change the weights for the terminal points, and b) he completely ignored the weighting issues in 

other than the terminal four values.  

Review of Past Attempts to hit EPB directly 



Bloechl (2014) introduced a new weighting scheme for the end values of the data but not 

arbitrarily like Bruchez (2003). He introduced a loss function to minimize (as discussed above). 

In order to resolve end points asymmetrical weighting issue of HP filter, Bloechl (2014) 

suggested (i) flexible scheme for number of end observations (k) to consider and (ii) flexible 

weights for end observations (α).  

With the loss function (Equation 7) one can assess the distortion which causes the biasness at the 

terminal points’ estimates (of trend using HP filter). Bloechl (2014) developed a scheme to 

reduce this distortion: higher the loss, higher the penalization (in linear manner). Thus, Bloechl 

(2014) suggested a flexible penalization for HP filter by taking different values of 𝜆 for different 

points in time. Considered a cumulative loss function:  

L λ =  l t, λ T
t=1                 (8) 

Review of Past Attempts to hit EPB directly 



Review of Past Attempts to hit EPB directly 
Bloechl (2014) implemented his scheme by replacing the scalar λ in equation (3) with a vector λt  

while increasing λ for k values at both ends. That is  

λT−2−k+j = λHP + αj,   and λk−j+1 = λHP + αj,      j = 1, … , k              (9) 

With different choices of 𝛼 and k for new vector 𝜆𝑡  in equation (9), one can obtain different 

values of accumulated loss function. Based upon his simulation work Bloechl (2014) has given 

different choices of 𝛼 and k for different values of 𝜆 and for different time period. Bloechl 

(2014) found estimated loss with his suggested scheme (1.16872) to be lower than that for HP 

filter approach (1.76382).   



Review of Past Attempts to hit EPB directly 

There are various issues in the way Bloechl (2014) attempted to address the EBP. First of all it 

considers only linear penalization to minimize the loss function in equation 8 whereas figures 1 

to 3 clearly suggest possibility of nonlinear penalization to minimize the loss function to zero. 

Moreover, selecting seemingly optimal weight (𝛼) from amongst the arbitrarily (and thus 

exogenously) chosen values of this weight does not ensure the loss minimization.  



Fully Modified HP Filter 
We marry the endogenous lambda approach of McDermott (1997) with loss function 

minimization approach of Bloechl (2014) while suggesting some intuitive changes in his 

weighting scheme (we critically evaluated above). We contribute by suggesting an endogenous 

weighting scheme along with endogenous smoothing parameter and resolve EPB issue of HP 

filter. We call this fully modified (FMHP) filter.  

We first estimate the lambda endogenously. For this, we estimate 𝑔𝑡 ,𝑘 𝜆  (i.e., equation 3) by 

applying the leave-out method (of McDermott, 1997) with =1 as an initial value. For different 

positive values of , we estimate equation (4) and select  that gives the minimum value of the 

objective function in equation 4. We call this 𝑀𝐻𝑃
. By this time we have an endogenous 

smoothing parameter. Here we propose the following (improved) scheme to minimize the 

cumulative loss in equation 8: (i) use linear or non linear increase of penalization (whichever 

minimizes the cumulative loss in equation 8) to the terminal points, (ii) fix the value of k (=20) 

and (iii) endogenous weights (for end observations) i.e. endogenous 𝛼.  
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 First, estimate 𝑔𝑡,𝑘 𝜆  applying the leave-out method using equation 3 starting with an 

arbitrary value for  (=1); 

 Second, for different values for >0, we obtain different estimates of (4) and  that gives 

the minimum value of the objective function (4) is chosen as the initial smoothing 

parameter as in McDermott (1997), 𝑀𝐻𝑃
. 

 Third, using value of  𝑀𝐻𝑃
 and weighting scheme below, we obtain optimal value of 𝛼 

and k. 

 𝑇−2−𝑘+𝑗
𝑀𝐻𝑃 = 𝑀𝐻𝑃 + α𝑗𝑖 ,   and 𝑘−𝑗+1

𝑀𝐻𝑃 = 𝑀𝐻𝑃 + α𝑗𝑖 ,      j = 1, … , k ;  i=1, 2. (9a)       

 Fourth, repeat step first to re-estimate 𝑔𝑡 ,𝑘 𝜆  with new weighting scheme using equation 

3 and optimal value of 𝛼 and k from step 3; 

 Fifth and last, using 𝑔𝑡 ,𝑘 𝜆  from step 4 along with different values of   and  new 

weighting scheme below we obtain different values of 𝑔𝑡 ,𝑘 𝜆  and hence  different values 

of equation (4). And  that gives the minimum value of the objective function (4) is 

chosen as the optimal smoothing parameter, 𝐹𝑀𝐻𝑃
. 

 𝑇−2−𝑘+𝑗
𝐹𝑀𝐻𝑃 = 𝐹𝑀𝐻𝑃 + α𝑗𝑖 ,   and 𝑘−𝑗+1

𝐹𝑀𝐻𝑃 = 𝐹𝑀𝐻𝑃 + α𝑗𝑖 ,      j = 1, … , k ;  i=1, 2. (9b) 
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Figure 1: Weighting vectors of HP filter with Lambda 100  
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Figure 1a: Weighting vectors of our scheme with lambda 100 
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Figure 2: Gain function for terminal and middle observations  

(using HP filter with lambda=100) 
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Figure 2a: Gain function for terminal and middle observations using our weighting scheme 

(with α=10 and k=20) with lambda=100 
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Figure 3: Estimated loss while we use HP filter (lambda=100) 
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Figure 3a:Estimated loss using our weighting scheme (α=10, k=20) with lambda=100 



Simulation Design 
Our simulation exercise has two stages: (i) generation of artificial series, and (ii) use of 

artificially generated series to evaluate HP, BK, CF and this study’s FMHP filters. Following 

Hodrick and Prescott (1997), we know that a typical economic time series (xt) is composed of a 

trend ( gt) and a cycle (ct) i.e. xt = gt + ct ,        t = 1, 2, 3,.  .  . , T. By choosing suitable data 

generating process (DGP), as discussed below, trend and cyclical components are generated 

separately. These two components are then combined to obtain single time series. This single 

time series is later decomposed using each of the above listed filters (i.e. HP, BK, CF, and 

FMHP). We compare the performance of these filters in extracting the cyclical part of the series. 

We use the root mean squared error (RMSE) as performance criterion. Ideally it should be zero. 

We actually see the abilities of these four filters to estimate cyclical components at end points of 

data series as well as on the middle in order to assess which filter performs the best particularly 

in minimizing the EPB.  



Simulation Design 
The trend and cyclical components for quarterly data can be generated as 

gt = drift + trendt + gt−1 + εt         (10a) 

ct = θ1ct−1 + θ2ct−2 + δt                      (10b) 

Where εt~NIID(0, σε
2) , δt~NIID(0, σδ

2). 

The data-generating process of equations 10a and 10b is chosen on the evidence that the trend of 

most observed macroeconomic series tends to follow a random walk with a drift, which could be 

either linear or nonlinear, while the cyclical series follows an AR(2) process. The DGP has 

general specification where trend part satisfies the unit root condition while cyclical part follows 

the stationary process [with θ1 + θ2 < 1 and  θ2 < 1]. 

We also consider the change of relative importance of each component by varying the ratio of 

standard deviation,σε/σδ, of the disturbances in equations 10a and 10b. In order to generate the 

artificial data closer to some observations (we have) upon real life data we take these ratios 

slightly different from Choudhary et.al (2014) and Guay and St. Amant (2005). We consider the 

following values of the ratio σε/σδ: 10, 5, 2, 1 and 0.50.  



Simulation Results 

None of HP, BK and CF filter could beat our FMHP filter even in a single model single time in 

this power comparison study.  

Table 1: Simulation Results of Performance
1
 Comparison of fully modified HP filter with HP, BK, and CF fitters

2
 

Mode (𝜎𝜀 /𝜎𝜉 )  Percent of times fully modified HP filter outperforms HP, (BK6), [CF7] filter 

________________________________________________________________________________________________________________________ 
AR Coefficients 
____________ 

(Generated as) Quarterly 
__________________________ 

Time Aggregated (Annual) 
________________________________________________________________________________________ 

First 

 (∅1) 

Second 

 (∅2) 

Linear trend Non linear trend Systematically 
__________________________ 

By Summing 
________________________ 

By Averaging 
_________________________ 

Linear trend Non linear trend Linear trend Non linear trend Linear trend Non linear trend 

(a) b3 c3 d3 e4 f4 g5 h5 i5 j5 k5 l5 

1 10 0.9 0.01 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
2 10 1.2 -0.25 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
3 10 1.2 -0.4 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
4 10 1.2 -0.55 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
5 10 1.2 -0.75 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
6 5 0.9 0.01 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
7 5 1.2 -0.25 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
8 5 1.2 -0.4 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
9 5 1.2 -0.55 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
10 5 1.2 -0.75 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
11 2 0.9 0.01 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
12 2 1.2 -0.25   100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
13 2 1.2 -0.4 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
14 2 1.2 -0.55 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
15 2 1.2 -0.75 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
16 1 0.9 0.01 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
17 1 1.2 -0.25   100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
18 1 1.2 -0.4 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
19 1 1.2 -0.55 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
20 1 1.2 -0.75 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
21 0.5 0.9 0.01 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
22 0.5 1.2 -0.25 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
23 0.5 1.2 -0.4 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
24 0.5 1.2 -0.55 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
25 0.5 1.2 -0.75 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
26 10 0.8 0 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
27 5 0.8 0 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
28 2 0.8 0 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
29 1 0.8 0 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 
30 0.5 0.8 0 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 100, (100), [100] 

1: Performance criterion is the root mean square error of the artificial cyclical and estimations of those artificial cyclical series. 2: HP, BK and CF denote Hodrick-Prescott, Baxter-King and Christiano-

Fitzgerald filters.  3. Columns b-d presents model’s assumptions for generating the artificial data. 4. Columns e-f are the power of fully modified HP filter compared to HP, BK and CF filters for quarterly 
data generated by linear and non-linear models respectively. 5. Columns g to l represent the power of fully  modified HP filter compared to HP, BK and CF filters for time aggregated (by summing as 

well as averaging) annual data  generated by linear and non-linear models. 6. For BK filter, we assume fixed lead-lag length, k=12 for quarterly data and k=3 for annual data; maximum length of cycle P1 

=32 for quarterly and P1=8 for annual data; minimum length of cycle P2=6 for quarterly data and P2=2 for annual data. 7. For CF filter there is no need for a fixed lag length: maximum and minimum 
length of cycles is the same as that of the BK filter. 

 



Simulation Results 

We can see that RMSE for end points is significantly high than the RMSE at the middle of the data set for all 

the filtering techniques used here. Hence for both quarterly and annually data series, all these filters have 

upward bias at end points of the series - for example, in case of quarterly data set the RMSE of HP filter at 

‘terminal points’ is 350% high than the RMSE at the middle. For FMHP this increase is 160% which is less 

than half (as compared to HP filter’s 350%).  Hence FMHP filter has smallest bias while HP and CF filters have 

higher EPB for quarterly and annual data respectively. We also observe from Table that FMHP has ‘overall’ 

lowest RMSE as compared to other methods for quarterly as well as annual data sets. Hence EPB is reduced 

significantly by using FMHP filter. 

 

Table 2: Root Mean Square Error of Cyclical component estimated by Fully Modified HP, HP, BK and CF filter 

  Average RMSE of cyclical component of 30 models 

Generated data set (full) Generated data set (middle values 80%) Generated data set (end points 20%) 

FMHP HP BK CF FMHP HP BK CF FMHP HP BK CF 

(Generated as) Quarterly 3.0 13.0 39.9 57.1 2.3 3.8 19.9 17.3 5.6 17.1 NA 73.9 

Time 

Aggregated 
(Annual) 

Systematically 
8.7 33.8 18.1 33.7 3.6 17.0 17.8 10.9 17.4 67.4 NA 72.2 

By Summing 
23.3 135.1 72.6 135.9 10.1 68.4 71.3 43.5 46.3 269.4 NA 291.2 

By Averaging 5.9 33.8 18.2 34.0 2.5 17.1 17.9 10.9 11.7 67.3 NA 72.8 



Simulation Results 
 

Table 2a: Root Mean Square Error of Cyclical component estimated by Fully Modified & Wavelet Analysis with extrapolation (WAN WE) 

  Average RMSE of cyclical component of 30 models 

Generated data set (full) Generated data set (middle values) Generated data set (end points) 

FMHP WAN (WE) FMHP WAN (WE) FMHP WAN (WE) 

(Generated as) Quarterly 3.0 8.3 2.3 8.9 5.6 78.2 

Time 
Aggregated 

(Annual) 

Systematically 
8.7 24.3 3.6 23.9 17.4 92 

By Summing 
23.3 57.0 10.1 56.3 46.3 337 

By Averaging 5.9 14.5 2.5 14.4 11.7 76 



Empirical Design 

We use annual and quarterly time series of three core macroeconomic variables namely real GDP, real 

(private) consumption and real investment. We select those 70 countries for which at least 40 annual 

observations for each of these series is available. Quarterly national income accounts being scant, we 

could find quarterly time series for income, consumption and investment for 33 countries only. The 

quarterly data is seasonally adjusted. We grouped all the countries into four income categories: high, 

upper middle, lower middle and lower income (as per World Bank 2015 classification). All the series are 

transformed into logarithms before we proceed to decompose the observed time series.   
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Table 3a: Estimated Loss (Annual Data) 

 

Fixed Lambda (100) This study proposed (our) weighing scheme with endogenous Lambda 

 

HP Filter HP (Bloechl scheme) HP (our scheme) FMHP filter FMHP filter FMHP filter 

 

Income Income Income Income Consumption Investment 

Algeria 1.735 1.260 0.626 0.545 0.532 0.560 

Australia 1.735 1.260 0.626 0.523 0.560 0.539 

Austria  1.733 1.267 0.545 0.513 0.491 0.494 

Bangladesh 1.735 1.260 0.626 0.521 0.535 0.637 

Belgium 1.733 1.267 0.545 0.506 0.507 0.468 

Benin 1.735 1.260 0.626 0.537 0.525 0.540 

Bolivia 1.735 1.260 0.626 0.586 0.567 0.533 

Botswana 1.731 1.147 0.647 0.505 0.501 0.505 

Brazil 1.735 1.260 0.626 0.561 0.565 0.536 

Burkina Faso 1.732 1.272 0.623 0.508 0.482 0.484 

Cameroon 1.735 1.260 0.626 0.576 0.534 0.606 

Canada 1.733 1.267 0.545 0.520 0.501 0.476 

Chile 1.735 1.260 0.626 0.556 0.529 0.522 

Colombia 1.735 1.260 0.626 0.522 0.529 0.580 

Congo, Rep 1.735 1.260 0.626 0.536 0.602 0.539 

Costa Rica 1.735 1.260 0.626 0.546 0.546 0.552 

Cuba 1.733 1.256 0.534 0.482 0.482 0.507 

Cyprus 1.731 1.147 0.647 0.471 0.391 0.391 

Denmark 1.733 1.267 0.545 0.492 0.522 0.470 

Dominican Republic 1.735 1.260 0.626 0.541 0.527 0.542 

Ecuador 1.735 1.260 0.626 0.561 0.541 0.537 

Egypt 1.733 1.225 0.604 0.470 0.423 0.397 

El Salvador 1.732 1.272 0.623 0.513 0.506 0.503 

Finland 1.733 1.267 0.545 0.517 0.481 0.540 

France  1.733 1.267 0.545 0.505 0.506 0.489 

Gabon 1.735 1.260 0.626 0.522 0.529 0.522 

Germany 1.733 1.267 0.545 0.477 0.472 0.504 

Greece 1.733 1.267 0.545 0.550 0.531 0.480 

Guatemala 1.735 1.260 0.626 0.584 0.582 0.526 

Honduras 1.735 1.260 0.626 0.523 0.521 0.560 

Hong Kong 1.733 1.227 0.546 0.484 0.481 0.403 

India 1.735 1.260 0.626 0.526 0.534 0.524 

Indonesia 1.735 1.260 0.626 0.550 0.530 0.522 

Iran 1.735 1.260 0.626 0.565 0.593 0.566 

Ireland 1.733 1.267 0.545 0.480 0.488 0.512 

Italy 1.733 1.267 0.545 0.477 0.476 0.474 

Japan 1.733 1.256 0.534 0.487 0.483 0.481 

Kenya 1.733 1.262 0.627 0.503 0.606 0.494 

Lesotho 1.733 1.262 0.627 0.512 0.532 0.498 

Luxembourg 1.733 1.267 0.545 0.476 0.510 0.509 

Madagascar 1.735 1.260 0.626 0.521 0.546 0.548 

Malaysia 1.735 1.260 0.626 0.529 0.620 0.560 

Malta 1.733 1.225 0.604 0.474 0.375 0.366 

Mauritania 1.735 1.260 0.626 0.528 0.521 0.560 

Mexico 1.735 1.260 0.626 0.562 0.526 0.523 

Morocco 1.734 1.278 0.623 0.522 0.510 0.541 

Netherlands 1.733 1.267 0.545 0.481 0.486 0.505 

New Zealand 1.733 1.267 0.545 0.484 0.479 0.472 

Norway  1.735 1.260 0.626 0.568 0.526 0.551 

P.N. Guinea 1.733 1.256 0.534 0.489 0.487 0.457 

Peru 1.735 1.260 0.626 0.571 0.561 0.590 

Philippines 1.735 1.260 0.626 0.583 0.572 0.542 

Portugal 1.733 1.267 0.545 0.504 0.486 0.472 

Puerto Rico 1.733 1.227 0.546 0.471 0.471 0.475 

Rwanda 1.735 1.260 0.626 0.531 0.531 0.539 

Senegal 1.735 1.260 0.626 0.522 0.527 0.563 

Singapore 1.731 1.147 0.647 0.470 0.417 0.469 

South Africa 1.735 1.260 0.626 0.582 0.569 0.566 

South Korea 1.735 1.260 0.626 0.559 0.544 0.531 

Spain 1.733 1.267 0.545 0.536 0.545 0.494 

Sudan 1.735 1.260 0.626 0.525 0.521 0.557 

Sweden 1.733 1.267 0.545 0.509 0.487 0.473 

Thailand 1.735 1.260 0.626 0.552 0.521 0.529 

Togo 1.735 1.260 0.626 0.524 0.678 0.523 

Trinidad & Tobago 1.735 1.260 0.626 0.581 0.575 0.595 

Tunisia 1.734 1.278 0.623 0.508 0.497 0.502 

UK 1.733 1.267 0.545 0.516 0.492 0.510 

Uruguay 1.732 1.272 0.623 0.484 0.481 0.528 

USA 1.733 1.256 0.534 0.495 0.482 0.445 

Venezuela 1.733 1.262 0.627 0.500 0.497 0.496 

Average 1.734 1.256 0.599 0.522 0.518 0.514 



Empirical Results 
Table 3b: Estimated Loss (Quarterly Data) 

 

Fixed Lambda (100) This study proposed (our) weighing scheme with endogenous Lambda 

 

HP Filter HP (Bloechl scheme) HP (our scheme) FMHP filter FMHP filter FMHP filter 

 

Income Income Income Income Consumption Investment 

Australia 1.762 1.618 0.818 0.829 0.881 0.815 

Austria 1.761 1.259 0.786 0.616 0.741 0.806 

Belgium  1.766 1.495 0.797 0.649 0.686 0.616 

Brazil 1.761 1.259 0.786 0.798 0.698 0.800 

Canada 1.760 1.608 0.818 0.659 0.669 0.683 

Costa Rica 1.769 1.682 0.814 0.657 0.720 0.911 

Czech Rep 1.761 1.259 0.786 0.582 0.641 0.652 

Denmark 1.766 1.495 0.797 0.547 0.608 0.571 

Estonia 1.766 1.495 0.797 0.589 0.594 0.642 

Finland 1.769 1.682 0.818 0.710 0.729 0.684 

France 1.762 1.617 0.820 0.610 0.668 0.573 

Germany 1.769 1.682 0.814 0.747 0.798 0.637 

Greece 1.766 1.495 0.797 0.685 0.694 0.696 

Hungary 1.766 1.495 0.797 0.623 0.644 0.739 

India 1.757 1.125 0.770 0.663 0.750 0.651 

Ireland 1.757 1.125 0.770 0.622 0.582 0.633 

Italy 1.761 1.259 0.786 0.661 0.709 0.677 

Korea 1.762 1.617 0.818 0.812 0.840 0.784 

Latvia 1.766 1.495 0.797 0.560 0.526 0.629 

Lithuania 1.766 1.495 0.797 0.627 0.580 0.642 

Mexico 1.768 1.629 0.810 0.741 0.741 0.819 

Netherlands 1.761 1.259 0.786 0.553 0.626 0.609 

New Zealand 1.770 1.629 0.827 0.617 0.644 0.668 

Norway 1.761 1.620 0.821 0.751 0.646 0.733 

Portugal 1.766 1.495 0.797 0.648 0.706 0.671 

Slovak Rep 1.757 1.125 0.770 0.622 0.626 0.677 

Slovenia 1.766 1.495 0.797 0.574 0.762 0.625 

South Africa 1.762 1.618 0.818 0.745 0.699 0.709 

Spain 1.766 1.495 0.797 0.590 0.637 0.609 

Sweden 1.768 1.629 0.810 0.651 0.779 0.631 

Switzerland 1.762 1.617 0.820 0.670 0.655 0.646 

UK 1.766 1.495 0.797 0.580 0.625 0.637 

US 1.766 1.495 0.797 0.544 0.566 0.539 

Average 1.764 1.480 0.801 0.653 0.681 0.679 

 



Empirical Results 
Table 4: Net AR(1) Coefficients and Standard Errors 

Country Group→ High Income Upper  Middle Income Lower Middle Income Lower Income 

Series1 Y C I Y C I Y C I Y C I 

Annual Data             

Number of Countries 30   16   19   5   

Average of (𝛽𝑓 − 𝛽ℎ)2 0.23   0.20 0.24 0.22  0.27 0.24 0.23 0.26 0.22 0.27 0.28 0.30 

Average of (𝜎𝑓 − 𝜎ℎ)3 0.02 0.02 0.05 0.03  0.03 0.07 0.02 0.03 0.06 0.02 0.03 0.08 

Countries not passing Z-

test at 10% for H0 : 

𝛽𝑓 − 𝛽ℎ = 0 

11 11 9 7  9 6 8 10 6 3 3 2 

Quarterly Data4             
Number of Countries 28   4   1   0   

Average of (𝛽𝑓 − 𝛽ℎ) -0.02 -0.02 -0.03 0.00 0.00 0.02 -0.01 0.07 -0.00 - - - 

Average of (𝜎𝑓 − 𝜎ℎ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00    

Countries not passing Z-

test at 10% for H0: 

𝛽𝑓 − 𝛽ℎ = 04 

0 0 0 0 0 0 0 0 0 - - - 

Notes:  1. Y, C and I denote detrended income, consumption and investment series. 2. The average of the net difference in the AR(1) coefficients where 

superscript f and h   denote fully modified HP filter and HP filter respectively. 3. The average of the net difference of the standard deviation of detrended 

series, where 𝜎𝑓  and 𝜎ℎ  are standard deviation of cyclical component estimated by fully modified HP filter and HP filter respectively.4.  AR(1) coefficient 
equality tests. 

     

 



Empirical Results 
Table 5: Net Unconditional Correlations 

Country 
Group→ 

High Income Upper Middle Income Lower Middle Income Lower Income 

Pairs1 Y-C Y-I Y-C Y-I Y-C Y-I Y-C Y-I 

Annual Data         
Number of Countries 30  16  19  5  

Average o𝑓 (𝜌𝑖
𝑓
− 𝜌ℎ)2 0.04 0.03 0.02 0.02 0.10 0.06 -0.02 0.00 

Countries not passing Z-

test at 10% for H0: 

𝜌𝑖
𝑓
− 𝜌ℎ = 0 

21 12 9 8 11 9 3 2 

Quarterly Data         

Number of Countries 28  4  1  0  

Average of (𝜌𝑖
𝑓
− 𝜌ℎ) -0.04 -0.03 0.01 0.00 0.04 -0.02 - - 

Countries not passing Z-
test at 10% for H0 

𝜌𝑖
𝑓
− 𝜌ℎ = 03 

18 16 2 3 0 0 - - 

Notes:  1. Y-C and Y-I denote unconditional correlations of individually detrended income-consumption and income-investment pairs. 2.  The average of 

net of the correlation coefficients (𝜌𝑖
𝑓
− 𝜌ℎ) where the correlation coefficient: 𝜌𝑓  and 𝜌ℎ   are obtained from wavelet and modified HP filter separately. 3. 

Correlation equality tests. 

 



Findings 

As we know when lambda is exogenously fixed, estimated loss is function of T (and fixed) 

lambda, the estimated loss for HP filter is independent of actual series and its underlying 

dynamics. The slight difference in estimated loss for different countries (as reported in column b) 

is only because of difference in number of observations for each of the country in the Tables. 

However, when we apply our weighting scheme with fixed lambda (like in HP filter) we see the 

estimated loss reduces to 0.599 (0.801) compared to 1.734 (1.764) found while we use the 

weighting scheme of Hodrick and Prescott (1997) in annual (quarterly) real income series.  

Thus FMHP of this study is best approach to minimize the EBP in HP type filtering.   



Findings 
While comparing the individual detrended series analytics we observe that  

a) ‘on average’ the difference in AR(1) coefficients of detrended series using two methods 

(MFHP filter minus the HP filter) is positive across countries, series for annual data while for 

quarterly data this difference  is almost zero, 

b) on average difference in the SEs of detrended series obtained by these filters (MFHP minus 

HP filter) is also positive across series and countries and frequency (especially for annual data) 

indicating less of cyclical component is left in trend when we extract cycle using FMHP filter, 

and  

c) the AR(1) coefficients of a cyclical part of a time series obtained from  two approaches are 

statistically significantly different from each other across the countries and series for annual data.  



Findings 

While comparing the unconditional correlation coefficients we observe two important things. 

First, for annual data set, on the average the point estimates of cross correlation coefficients 

between the cyclical components extracted by FMHP filter of the income-consumption and 

income-investment pairs are higher than those between the cyclical components extracted using 

the HP filter. However, the opposite is true for quarterly data correlations. Second, although the 

point estimate difference between  pair wise  correlation coefficients are small for both annual 

and quarterly data set, most of these differences are statistically significant.  For both annual and 

quarterly data, there are about 60 percent courtiers having statistically significant pair wise 

correlation difference. This shows that the choice of  and weighting scheme are also relevant 

for second order moments of annual series. 



Conclusion 
Despite its extensive use to extract cyclical component from a macroeconomic time series, end 

point bias issue of HP filter is well documented in the relevant literature.  

We furthered McDermott (1997) Modified HP filter of endogenous smoothing parameter by 

combing it with an intuitive weighting scheme compared to Bloechl (2014) to solve EPB in HP 

filtering. We propose to use linear or non linear increase of penalization (whichever minimizes 

the cumulative loss) to the terminal points while fixing the end point observations to penalize 

and endogenous end point observations’ weights.  

Our FMHP outperforms the conventional filters (like HP, BK and CF filter) in a power 

comparison study. End point performance of our FMHP is specifically evaluated and found best.  

When we put FMHP filtering to real life test based detrending (of real income, consumption and 

investment time series of a large number of countries) we find that our FMHP filter significantly 

lowers the EPB compared to Bloechl (2014) and that FMHP performs better in moments’ 

analytics compared to HP filter.  



Policy Implication 

With the use of better estimates of the cyclical behavior (with FMHP filtering) of their economies, 

economic managers will have better knowledge of the state of their economic dynamics and thus will 

be able to take necessary stabilization measures at right time.   

EPB contaminates the estimated trend with the cyclical component and thus underestimate the 

cyclical component during both the recovery as well as recession. It also results in downward biased 

standard error of the estimated cyclical component. A downward biased standard error of the 

estimated cyclical component may give impression of a stable economy, and the underestimated 

cyclical component during booming/receding economy may delay the necessary stabilization 

measures by economic managers. 



   

   

   Thank you.  


